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We have studied vector-valued functions-functions that assign a vector
to a real number where we saw that vector-valued functions of real
numbers are useful in representing curves and motion along a curve.

We will study two other types of vector-valued functions - functions
that assign a vector to a point in the plane or a point in space.

Such functions are called vector fields, and they are useful in
representing various types of force fields and velocity fields.
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Definition 15.1 (Vector field)

A vector field over a plane region R is a function F that assigns a vector
F(x , y) to each point in R.
A vector field over a solid region Q in space is a function F that assigns a
vector F(x , y , z) to each point in Q.

The gradient is one example of a vector field. For example, if

f (x , y) = x2y + 3xy2

then the gradient of f

∇f (x , y) = fx(x , y) i+ fy (x , y) j

= (2xy + 3y3) i+ (x2 + 9xy2) j Vector field in the plane

is a vector field in the plane.
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The graphical interpretation of this field is a family of vectors, each of
which points in the direction of maximum increase along the surface
given by z = f (x , y).

Similarly, if
f (x , y , z) = x2 + y2 + z2

then the gradient of f

∇f (x , y , z) = fx(x , y , z) i+ fy (x , y , z) j+ fz(x , y , z) k

= 2x i+ 2y j+ 2z k Vector field in the in space

is a vector field in space.

Note that the component functions for this particular vector field are
2x , 2y , and 2z .
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A vector field

F = M(x , y , z) i+ N(x , y , z) j+ P(x , y , z) k

is continuous at a point if and only if each of its component
functions M, N, and P is continuous at that point.
Some common physical examples of vector fields are velocity fields,
gravitational fields, and electric force fields. Figure 1 shows the vector
field determined by a wheel rotating on an axle.

Figure 1: Rotating wheel
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Notice that the velocity vectors are determined by the locations of
their initial points - the farther a point is from the axle, the greater its
velocity.

Gravitational fields are defined by Newton’s Law of Gravitation, which
states that the force of attraction exerted on a particle of mass m1

located at (x , y , z) by a particle of mass m2 located at (0, 0, 0) is
given by

F(x , y , z) =
−Gm1m2

x2 + y2 + z2
u

where G is the gravitational constant and u is the unit vector in the
direction from the origin to (x , y , z).

In Figure 2, you can see that the gravitational field F has the
properties that F(x , y , z) always points toward the origin, and that
the magnitude of F(x , y , z) is the same at all points equidistant from
the origin.
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Figure 2: Gravitation force field

A vector field with these two properties is called a central force field.
Using the position vector r = x i+ y j+ z k for the point (x , y , z), you
can write the gravitational field F as

F(x , y , z) =
−Gm1m2

∥r∥2

(
r

∥r∥

)
=

−Gm1m2

∥r∥2
u
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Electric force fields are defined by Coulomb’s Law, which states that
the force exerted on a particle with electric charge q1 located at
(x , y , z) by a particle with electric charge q2 located at (0, 0, 0) is
given by

F(x , y , z) =
cq1q2
∥r∥2

u

where r = x i+ y j+ z k, u = r/∥r∥, and c is a constant that depends
on the choice of units for ∥r∥, q1 and q2.

Note that an electric force field has the same form as a gravitational
field. That is,

F(x , y , z) =
k

∥r∥2
u.

Such a force field is called an inverse square field.
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Definition 15.2 (Inverse square field)

Let r(t) = x(t) i+ y(t) j+ z(t) k be a position vector. The vector field F
is an inverse square field if

F(x , y , z) =
k

∥r∥2
u

here k is a real number and u = r/∥r∥ is a unit vector in the direction of r.

Because vector fields consist of infinitely many vectors, it is not
possible to create a sketch of the entire field.

When you sketch a vector field, your goal is to sketch representative
vectors that help you visualize the field!
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Example 2 (Sketching a Vector Field)

Sketch some vectors in the vector field given by

F(x , y) = 2x i+ y j
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Figure 3: Sketching a vector field
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Conservative Vector Fields

Notice in Figure 3 that all the vectors appear to be normal to the
level curve from which they emanate.

Because this is a property of gradients, it is natural to ask whether
the vector field given by F(x , y) = 2x i+ y j is the gradient of some
differentiable function f .

The answer is that some vector fields can be represented as the
gradients of differentiable functions and some cannot - those that can
are called conservative vector field.
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Definition 15.3 (Conservative vector field)

A vector field F is called conservative if there exists a differentiable
function f such that F = ∇f . The function f is called the potential
function for F.
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Example 4 (Conservative Vector Fields)

a. Show that the vector field given by F(x , y) = 2x i+ y j is conservative.

b. Every inverse square field is conservative.
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Theorem 15.1 (Test for conservative vector field in the plane)

Let M and N have continuous first partial derivatives on an open disk R.
The vector field given by F(x , y) = M i+ N j is conservative if and only if

∂N

∂x
=

∂M

∂y
.
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Example 5 (Test for conservative vector field in the plane)

Decide whether the vector field given by F is conservative.

a. F(x , y) = x2y i+ xy j

b. F(x , y) = 2x i+ y j
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Example 6 (Finding a potential function for F(x , y))

Find a potential function for

F(x , y) = 2xy i+ (x2 − y) j.
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Curl of a Vector Field

Theorem 15.1 has a counterpart for vector fields in space. Before
stating that result, the definition of the curl of a vector field in space
is given.

Definition 15.4 (Definition of curl of a vector field)

The curl of F(x , y , z) = M i+ N j+ P k is

curlF(x , y , z) = ∇× F(x , y , z)

=

(
∂P

∂y
− ∂N

∂z

)
i+

(
∂P

∂x
− ∂M

∂z

)
j+

(
∂N

∂x
− ∂M

∂y

)
k

If curl F = 0, then F is said to be irrotational.
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The cross product notation used for curl comes from viewing the
gradient ∇f as the result of the differential operator ∇ acting on the
function f .

You can use the following determinant form as an aid in remembering
the formula for curl:

curlF(x , y , z) = ∇× F(x , y , z)

=

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣
=

(
∂P

∂y
− ∂N

∂z

)
i+

(
∂P

∂x
− ∂M

∂z

)
j+

(
∂N

∂x
− ∂M

∂y

)
k
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Example 7 (Finding the Curl of a Vector Field)

Find curlF of the vector field given by

F(x , y , z) = 2xy i+ (x2 + z2) j+ 2yz k

Is F irrotational?

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 23 / 180



Later in this chapter, you will assign a physical interpretation to the
curl of a vector field.

But for now, the primary use of curl is shown in the following test for
conservative vector fields in space.

The test states that for a vector field in space, the curl is 0 at every
point in its domain if and only if F is conservative.

The proof is similar to that given for Theorem 15.1.
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Theorem 15.2 (Test for conservative vector field in space)

Suppose that M, N, and P have continuous first partial derivatives in an
open sphere Q in space. The vector field given by
F(x , y , z) = M i+ N j+ P k is conservative if and only if

curlF(x , y , z) = 0.

That is, F is conservative if and only if

∂P

∂y
=

∂N

∂z
,

∂P

∂x
=

∂M

∂z
, and

∂N

∂x
=

∂M

∂y
.
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From Theorem 15.2, you can see that the vector field given in
Example 7 is conservative because curlF(x , y , z) = 0.

Try showing that the vector field

F(x , y , z) = x3y2z i+ x3z j+ x3y k

is not conservative - you can do this by showing that its curl is

curlF(x , y , z) = (x3y2 − 2xy) j+ (2xy − 2x3yz) k ̸= 0.

For vector fields in space that pass the test for being conservative,
you can find a potential function by following the same pattern used
in the plane.
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Example 8 (Finding a Potential Function for F(x , y , z))

Find a potential function for

F(x , y , z) = 2xy i+ (x2 + z2) j+ 2yz k.
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Divergence of a Vector Field

You have seen that the curl of a vector field F is itself a vector field.
Another important function defined on a vector field is divergence,
which is a scalar function.

Definition 15.5 (Divergence of a vector field)

The divergence of F(x , y) = M i+ N j is

divF(x , y) = ∇ · F(x , y) = ∂M

∂x
+

∂N

∂y
. Plane

The divergence of F(x , y , z) = M i+ N j+ P k is

divF(x , y , z) = ∇ · F(x , y , z) = ∂M

∂x
+

∂N

∂y
+

∂P

∂z
. Space

If divF = 0, then F is said to be divergence-free vector field.
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The dot product notation used for divergence comes from considering
∇ as a differential operator, as follows.

∇ · F(x , y , z) =
[(

∂

∂x

)
i+

(
∂

∂y

)
j+

(
∂

∂z

)
k

]
· (M i+ N j+ P k)

=
∂M

∂x
+

∂N

∂y
+

∂P

∂z

Divergence can be view as a type of derivative of F.

In hydrodynamics, a velocity field that is divergence free is called
incompressible and in electricity and magnetism it is called solenoidal.
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Example 9 (Finding the Divergence of a Vector Field)

Find the divergence at (2, 1,−1) for the vector field

F(x , y , z) = x3y2z i+ x2z j+ x2y k.

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 30 / 180



Theorem 15.3 (Divergence and curl)

If F(x , y , z) = M i+ N j+ P k is a vector field and M, N, and P have
continuous second partial derivatives, then

div(curlF) = 0.
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Piecewise Smooth Curves

A classic property of gravitational fields is that, subject to certain
physical constraints, the work done by gravity on an object moving
between two points in the field is independent of the path taken by
the object.

One of the constraints is that the path must be a piecewise smooth
curve. Recall that a plane curve C given by

r(t) = x(t) i+ y(t) j, a ≤ t ≤ b

is smooth if
dx

dt
and

dy

dt

are continuous on [a, b] and not simultaneously 0 on (a, b).
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Similarly, a space curve C given by

r(t) = x(t) i+ y(t) j+ z(t) k, a ≤ t ≤ b

is smooth if
dx

dt
,

dy

dt
, and

dz

dt

are continuous on [a, b] and not simultaneously 0 on (a, b).

A curve C is piecewise smooth if the interval [a, b] can be partitioned
into a finite number of subintervals, on each of which C is smooth.
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Example 1 (Finding a Piecewise Smooth Parametrization)

Find a piecewise smooth parametrization of the graph of C shown in
Figure 4.

Figure 4: piecewise smooth parametrization
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Recall that parametrization of a curve induces an orientation to the
curve.

In Example 1, the curve is oriented such that the positive direction is
from (0, 0, 0), following the curve to (1, 2, 1).

Try finding a parametrization that induces the opposite orientation.
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line integral

Up to this point in the text, you have studied various types of
integrals. For a single integral∫ b

a
f (x)dx Integrate over interval [a, b]

you integrated over the interval [a, b]. Similarly, for a double integral∫∫
R
f (x , y) dA Integrate over region R

you integrated over the region R in the plane.

In this section, you will study a new type of integral called a
line integral ∫

C
f (x , y) ds Integrate over curve C

for which you integrate over a piecewise smooth curve C .
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To introduce the concept of a line integral, consider the mass of a
wire of finite length, given by a curve C in space.

The density (mass per unit length) of the wire at the point (x , y , z) is
given by f (x , y , z). Partition the curve C by the points

P0, P1, . . . , Pn

producing n subarcs, as shown in Figure 5.

Figure 5: Partitioning of curve C
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The length of the ith subarc is given by ∆si . Next, choose a point
(xi , yi , zi ) in each subarc.

If the length of each subarc is small, the total mass of the wire can be
approximated by the sum

Mass of wire ≈
n∑

i=1

f (xi , yi , zi )∆si

If you let ∥∆∥ denote the length of the longest subarc and let ∥∆∥
approach 0, it seems reasonable that the limit of this sum approaches
the mass of the wire.
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Definition 15.6 (Line integral)

If f is defined in a region containing a smooth curve C of finite length,
then the line integral of f along C is given by∫

C
f (x , y) ds = lim

∥∆∥→0

n∑
i=1

f (xi , yi )∆si Plane

or ∫
C
f (x , y , z) ds = lim

∥∆∥→0

n∑
i=1

f (xi , yi , zi )∆si Space

provided this limit exists.
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As with the integrals discussed in Chapter 14, evaluation of a line
integral is best accomplished by converting it to a definite integral

It can be shown that if f is continuous, the limit given above exists
and is the same for all smooth parametrizations of C .

To evaluate a line integral over a plane curve C given by
r(t) = x(t) i+ y(t) j, use the fact that

ds = ∥r′(t)∥ =
√

[x ′(t)]2 + [y ′(t)]2 dt.
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Theorem 15.4 (Evaluation of a line integral as a definite integral)

Let f be continuous in a region containing a smooth curve C. If C is given
by r(t) = x(t) i+ y(t) j, where a ≤ t ≤ b, then∫

C
f (x , y)ds =

∫ b

a
f (x(t), y(t))

√
[x ′(t)]2 + [y ′(t)]2 dt.

If C is given by r(t) = x(t) i+ y(t) j+ z(t) k, where a ≤ t ≤ b, then∫
C
f (x , y , z)ds =

∫ b

a
f (x(t), y(t), z(t))

√
[x ′(t)]2 + [y ′(t)]2 + [z ′(t)]2 dt.

Note that if f (x , y , z) = 1, the line integral gives the arc length of the
curve C , as defined in Section 12.5. That is,∫

C
1 ds =

∫ b

a
∥r′(t)∥dt = length of curve C .
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Example 2 (Evaluating a Line Integral)

Evaluate ∫
C
(x2 − y + 3z)ds

where C is the line segment shown in Figure 6.

Figure 6: Line segment
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Suppose C is a path composed of smooth curves C1, C2, . . ., Cn.

If f is continuous on C , it can be shown that∫
C
f (x , y)ds =

∫
C1

f (x , y)ds +

∫
C2

f (x , y)ds + · · ·+
∫
Cn

f (x , y)ds.

This property is used in Example 3.
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Example 3 (Evaluating a Line Integral Over a Path)

Evaluate ∫
C
x ds

where C is the piecewise smooth curve shown in Figure 7.

Figure 7: Piecewise smooth curve
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For parametrizations given by r(t) = x(t) i+ y(t) j+ z(t) k, it is
helpful to remember the form of ds as

ds = ∥r′(t)∥ dt =
√
[x ′(t)]2 + [y ′(t)]2 + [z ′(t)]2 dt.

This is demonstrated in Example 4.

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 49 / 180



Example 4 (Evaluating a line Integral)

Evaluate ∫
C
(x + 2) ds

where C is the curve represented by

r(t) = t i+
4

3
t3/2 j+

1

2
t2 k, 0 ≤ t ≤ 2.
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Line Integrals of Vector Fields

One of the most important physical applications of line integrals is
that of finding the work done on an object moving in a force field.

For example, Figure 8 shows an inverse square force field similar to
the gravitational field of the sun.

(a) Inverse square
force field F

(b) Vectors along a
parabolic path in the
force field F

Figure 8: Force field F
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Note that the magnitude of the force along a circular path about the
center is constant, whereas the magnitude of the force along a
parabolic path varies from point to point.

To see how a line integral can be used to find work done in a force
field F, consider an object moving along a path C in the field, as
shown in Figure 9.

Figure 9: At each point on C , the force in the direction of motion is (F · T)T
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To determine the work done by the force, you need consider only that
part of the force that is acting in the same direction as that in which
the object is moving (or the opposite direction).

This means that at each point on C , you can consider the projection
F · T of the force vector F onto the unit tangent vector T.

On a small sub arc of length ∆si , the increment of work is

∆Wi = (force)(distance)

≈ [F(xi , yi , zi ) · T(xi , yi , zi )]∆si

where (xi , yi , zi ) is a point in the ith subarc.
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Consequently, the total work done is given by the following integral.

W =

∫
C
F(x , y , z) · T(x , y , z) ds

This line integral appears in other contexts and is the basis of the
following definition of the line integral of a vector field.

Note in the definition that

F · T ds = F · r′(t)

∥r′(t)∥
∥r′(t)∥ dt

= F · r′(t) dt
= F · dr.
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Definition 15.7 (The line integral of a vector field)

Let F be a continuous vector field defined on a smooth curve C given by
r(t), a ≤ t ≤ b. The line integral of F on C is given by∫

C
F · dr =

∫
C
F · T ds =

∫ b

a
F(x(t), y(t), z(t)) · r′(t) dt
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Example 6 (Work Done by a Force)

Find the work done by the force field

F(x , y , z) = −1

2
x i− 1

2
y j+

1

4
k Force field F

on a particle as it moves along the helix given by

r(t) = cos t i+ sin t j+ t k Space curve C

from the point (1, 0, 0) to (−1, 0, 3π), as shown in Figure below.
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The computer-generated view of the force field in Example 6 shown in
Figure 57 indicates that each vector in the force field points toward
the z-axis.

For line integrals of vector functions, the orientation of the curve C is
important.

If the orientation of the curve is reversed, the unit tangent vector
T(t) is changed to −T(t), and you obtain∫

−C
F · dr = −

∫
C
F · dr.
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Example 7 (Orientation and Parametrization of a Curve)

Let F(x , y) = y i+ x2 j and evaluate the line integral
∫
C F · dr for each

parabolic curve shown in Figure below.

a. C1 : r1(t) = (4− t) i+ (4t − t2) j, 0 ≤ t ≤ 3

b. C2 : r2(t) = t i+ (4t − t2) j, 1 ≤ t ≤ 4
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Line Integrals in Differential Form

A second commonly used form of line integrals is derived from the
vector field notation used in the preceding section.

If F is a vector field of the form F(x , y) = M i+ N j, and C is given
by r(t) = x(t) i+ y(t) j, then F · dr is often written as M dx + N dy .∫

C
F · dr =

∫
C
F · dr

dt
dr

=

∫ b

a
(M i+ N j) · [x ′(t) i+ y ′(t) j]dt

=

∫ b

a

(
M

dx

dt
+ N

dy

dt

)
dt

=

∫
C
(M dx + N dy)
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This differential formcan be extended to three variables.

The parentheses are often omitted, as follows.∫
C
M dx + N dy and

∫
C
M dx + N dy + P dz

Notice how this differential notation is used in Example 8.
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Example 8 (Evaluating a line Integral in Differential Form)

Let C be the circle of radius 3 given by
r(t) = 3 cos t i+ 3 sin t j, 0 ≤ t ≤ 2π as shown in Figure below. Evaluate
the line integral ∫

C
y3 dx + (x3 + 3xy2) dy .
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Fundamental Theorem of line Integrals

The discussion at the beginning of the preceding section pointed out
that in a gravitational field the work done by gravity on an object
moving between two points in the field is independent of the path
taken by the object.

You will study an important generalization of this result - it is called
the Fundamental Theorem of Line Integrals.

To begin, an example is presented in which the line integral of a
conservative vector field is evaluated over three different paths.
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Example 1 (Line integral of a conservative vector field)

Find the work done by the force field

F(x , y) =
1

2
xy i+

1

4
x2 j

on a particle that moves from (0, 0) to (1, 1) along each path, as shown in
Figure below.
a. C1 : y = x b. C2 : x = y2 c. C3 : y = x3

Figure 10: Lower degree polynomial curves
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Theorem 15.5 (Fundamental theorem of line integrals)

Let C be a piecewise smooth curve lying in an open region R and given by

r(t) = x(t) i+ y(t) j, a ≤ t ≤ b.

If F(x , y) = M i+N j is conservative in R, and M and N are continuous in
R, then ∫

C
F · dr =

∫
C
∇f · dr = f (x(b), y(b))− f (x(a), y(a))

where f is a potential function of F. That is, F(x , y) = ∇f (x , y).
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Example 2 (Using the fundamental theorem of line integrals)

Evaluate
∫
C F · dr, where C is a piecewise smooth curve from (−1, 4) to

(1, 2) and
F(x , y) = 2xy i+ (x2 − y) j

as shown in Figure 11.

Figure 11: Using the fundamental theorem of line integrals,
∫
C
F · dr
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Independence of Path

From the Fundamental Theorem of Line Integrals it is clear that if F
is continuous and conservative in an open region R, the value of∫
C F · dr is the same for every piecewise smooth curve C from one
fixed point in R to another fixed point in R.

This result is described by saying that the line integral
∫
C F · dr is

independent of path in the region R.

A region in the plane (or in space) is connected if any two points in
the region can be joined by a piecewise smooth curve lying entirely
within the region, as shown in Figure 12.
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Figure 12: Connected and not connected regions

In open regions that are connected, the path independence of∫
C F · dr is equivalent to the condition that F is conservative.
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Theorem 15.6 (Independence of path and conservative vector fields)

If F is continuous on an open connected region, then the line integral∫
C
F · dr

is independent of path if and only if F is conservative.
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Example 4 (Finding Work in a conservative force field)

For the force field given by

F(x , y , z) = ex cos y i− ex sin y j+ 2 k

show that
∫
C F · dr is independent of path, and calculate the work done by

F on an object moving along a curve C from (0, π/2, 1) to (1, π, 3).
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How much work would be done if the object in Example 4 moved
from the point (0, π/2, 1) to (1, π, 3) and then back to the starting
point (0, π/2, 1)?

The Fundamental Theorem of Line Integrals states that there is zero
work done. Remember that, by definition, work can be negative. So,
by the time the object gets back to its starting point, the amount of
work that registers positively is canceled out by the amount of work
that registers negatively.

A curve C given by r(t) for a ≤ t ≤ b is closed if r(a) = r(b).
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By the Fundamental Theorem of Line Integrals, you can conclude
that if F is continuous and conservative on an open region R, then
the line integral over every closed curve C is 0.

Theorem 15.7 (Equivalent conditions)

Let F(x , y , z) = M i+ N j+ P k have continuous first partial derivatives in
an open connected region R, and let C be a piecewise smooth curve in R.
The following conditions are equivalent.

1. F is conservative. That is, F = ∇f for some function f .

2.
∫
C F · dr is independent of path.

3.
∫
C F · dr = 0 for every closed curve C in R.
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Example 5 (Evaluating a Line Integral)

Evaluate ∫
C1

F · dr

where
F(x , y) = (y3 + 1) i+ (3xy2 + 1) j

and C1 is the semicircular path from (0, 0) to (2, 0), as shown in Figure 13.

Figure 13: Semicircular path from (0, 0) to (2, 0).
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Green’s Theorem

In this section, you will study Green’s Theorem which states that the
value of a double integral over a simply connected plane region R is
determined by the value of a line integral around the boundary of R.

A curve C given by r(t) = x(t) i+ y(t)j, where a ≤ t ≤ b, is simple if
it does not cross itself - that is, r(c) ̸= r(d) for all c and d in the
open interval (a, b).

A plane region R is simply connected if every simple closed curve in R
encloses only points that are in R (see Figure 14).

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 85 / 180



Figure 14: Simple connected and not simple connected regions.
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Theorem 15.8 (Green’s theorem)

Let R be a simply connected region with a piecewise smooth boundary C,
oriented counterclockwise (that is, C is traversed once so that the region
R always lies to the left). If M and N have continuous first partial
derivatives in an open region containing R, then∫

C
M dx + N dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA.
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Example 1 (Using Green’s Theorem)

Use Green’s Theorem to evaluate the line integral∫
C
y3 dx + (x3 + 3xy2) dy

where C is the path from (0, 0) to (1, 1) along the graph of y = x3 and
from (1, 1) to (0, 0) along the graph of y = x , as shown in Figure 15.

Figure 15: C is simple and closed, and the region R always lies to the left of C .
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Example 2 (Using Green’s Theorem to Calculate Work)

While subject to the force

F(x , y) = y3 i+ (x3 + 3xy2) j

a particle travels once around the circle of radius 3 shown in Figure 16.
Use Green’s Theorem to find the work done by F.

Figure 16: Circle.
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Example 3 (Green’s Theorem and Conservative Vector Fields)

Evaluate the line integral ∫
C
y3 dx + 3xy2 dy

where C is the path shown in Figure 17.

Figure 17: C is closed.
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In Examples 1 and 2 Green’s Theorem was used to evaluate line
integrals as double integrals.

You can also use the theorem to evaluate double integrals as line
integrals. One useful application occurs when ∂N/∂x − ∂M/∂y = 1.∫

C
M dx + N dy =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA

=

∫∫
R
1 dA

= area of regionR

Among the many choices for M and N satisfying the stated condition,
the choice of M = −y/2 and N = x/2 produces the following line
integral for the area of region R
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Theorem 15.9 (Line integral for area)

If R is a plane region bounded by a piecewise smooth simple closed curve
C, oriented counterclockwise, then the area of R is given by

A =
1

2

∫
C
x dy − y dx .
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Example 5 (Finding Area by a Line Integral)

Use a line integral to find the area of the ellipse

x2

a2
+

y2

b2
= 1.
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Alternative Forms of Green’s Theorem

This section concludes with the derivation of two vector forms of
Green’s Theorem for regions in the plane.

If F is a vector field in the plane, you can write

F(x , y , z) = M i+ N j+ 0 k

so that the curl of F, as described in Section 15.1, is given by

curlF = ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

M N 0

∣∣∣∣∣∣
= −∂N

∂z
i+

∂M

∂z
j+

(
∂N

∂x
− ∂M

∂y

)
k.

Consequently,

(curlF) · k =

[
−∂N

∂z
i+

∂M

∂z
j+

(
∂N

∂x
− ∂M

∂y

)
k

]
· k =

∂N

∂x
− ∂M

∂y
.
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With appropriate conditions on F, C , and R, you can write Green’s
Theorem in the vector form∫

c
F · dr =

∫∫
R

(
∂N

∂x
− ∂M

∂y

)
dA

=

∫∫
R
(curlF) · kdA. First alternative form

The extension of this vector form of Green’s Theorem to surfaces in
space produces Stokes’s Theorem, discussed later on.

For the second vector form of Green’s Theorem, assume the same
conditions for F, C , and R. Using the arc length parameter s for C ,
you have r(s) = x(s) i+ y(s) j

So, a unit tangent vector T to curve C is given by
r′(s) = T = x ′(s) i+ y ′(s) j.
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From Figure below you can see that the outward unit normal vector
N can then be written as

N = y ′(s) i− x ′(s) j.

T = cos θ i+ sin θ j

n = cos
(
θ +

π

2

)
i+ sin

(
θ +

π

2

)
j

= − sin θ i+ cos θ j

N = sin θ i− cos θ j
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Consequently, for F(x , y) = M i+ N j, you can apply Green’s
Theorem to obtain∫

C
F ·N ds =

∫ b

a
(M i+ N j) · (y ′(s) i− x ′(s) j) ds

=

∫ b

a

(
M

dy

ds
− N

dx

ds

)
ds

=

∫
C
M dy − N dx

=

∫
C
−N dx +M dy

=

∫∫
R

(
∂M

∂x
+

∂N

∂y

)
dA Green’s Theorem

=

∫∫
R
divF dA.
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Therefore,∫
C
F ·N ds =

∫∫
R
divFdA. Second alternative form

The extension of this form to three dimensions is called the
Divergence Theorem, discussed in Section 15.7. The physical
interpretations of divergence and curl will be discussed later on as
well.

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 101 / 180



Table of Contents

1 Vector fields

2 Line integrals

3 Conservative vector fields and independence of path

4 Green’s Theorem

5 Parametric surfaces

6 Surface integrals

7 Divergence Theorem

8 Stokes’s Theorem

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 102 / 180



Parametric Surfaces

You already know how to represent a curve in the plane or in space by
a set of parametric equations - or, equivalently, by a vector-valued
function.

r(t) = x(t) i+ y(t) j Plane curve

r(t) = x(t) i+ y(t) j+ z(t) k Space curve

In this section, you will learn how to represent a surface in space by a
set of parametric equations - or by a vector-valued function.

For curves, note that the vector-valued function r is a function of a
single parameter t. For surfaces, the vector-valued function is a
function of two parameters u and v .
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Definition 15.8 (Definition of parametric surface)

Let x , y , and z be functions of u and v that are continuous on a domain
D in the uv -plane. The set of points (x , y , z) given by

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v) k Parametricsurface

is called a parametric surface . The equations

x = x(u, v), y = y(u, v), and z = z(u, v) Parametric equations

are the parametric equations for the surface.
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If S is a parametric surface given by the vector-valued function r,
then S is traced out by the position vector r(u, v) as the point (u, v)
moves throughout the domain D, as shown in Figure 18.

Figure 18: The point (u, v) moves throughout the domain D.
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Example 1 (Sketching a Parametric Surface)

Identify and sketch the parametric surface S given by

r(u, v) = 3 cos u i+ 3 sin u j+ v k

where 0 ≤ u ≤ 2π and 0 ≤ v ≤ 4.
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Figure 19: Cylinder.
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Finding Parametric Equations for Surfaces

In Examples 1 you were asked to identify the surface described by a
given set of parametric equations.

The reverse problem - that of writing a set of parametric equations
for a given surface - is generally more difficult.

One type of surface for which this problem is straightforward,
however, is a surface that is given by z = f (x , y). You can
parametrize such a surface as

r(x , y) = x i+ y j+ f (x , y) k.
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Example 3 (Representing a Surface Parametrically)

Write a set of parametric equations for the cone given by

z =
√

x2 + y2

as shown in Figure 20.

Figure 20: Cone.
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Normal Vectors and Tangent Planes

Let S be a parametric surface given by

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v) k

over an open region D such that x , y , and z have continuous partial
derivatives on D.

The partial derivatives of r with respect to u and v are defined as

ru =
∂x(u, v)

∂u
i+

∂y(u, v)

∂u
j+

∂z(u, v)

∂u
k

and

rv =
∂x(u, v)

∂v
i+

∂y(u, v)

∂v
j+

∂z(u, v)

∂v
k.

Each of these partial derivatives is a vector-valued function that can
be interpreted geometrically in terms of tangent vectors.
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For instance, if v = v0 is held constant, then r(u, v0) is a
vector-valued function of a single parameter and defines a curve C1

that lies on the surface S .

The tangent vector to C1 at the point (x(u0, v0), y(u0, v0), z(u0, v0))
is given by

ru(u0, v0) =
∂x

∂u

∣∣∣∣
(u0,v0)

i+
∂y

∂u

∣∣∣∣
(u0,v0)

j+
∂z

∂u

∣∣∣∣
(u0,v0)

k

as shown in Figure 21.

Figure 21: Paraboloid.
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In a similar way, if u = u0 is held constant, then r(u0, v) is a
vector-valued function of a single parameter and defines a curve C2

that lies on the surface S .

The tangent vector to C2 at the point (x(u0, v0), y(u0, v0), z(u0, v0))
is given by

rv (u0, v0) =
∂x

∂v

∣∣∣∣
(u0,v0)

i+
∂y

∂v

∣∣∣∣
(u0,v0)

j+
∂z

∂v

∣∣∣∣
(u0,v0)

k.

If the normal vector ru × rv is not 0 for any (u, v) in D, the surface S
is called smooth and will have a tangent plane. Informally, a smooth
surface is one that has no sharp points or cusps. For instance,
spheres, ellipsoids, and paraboloids are smooth, whereas the cone
given in Example 3 is not smooth.
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Definition 15.9 (Normal vector to a smooth parametric surface)

Let S be a smooth parametric surface

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v) k

defined over an open region D in the uv -plane. Let (u0, v0) be a point in
D. A normal vector at the point

(x0, y0, z0) = (x(u0, v0), y(u0, v0), z(u0, v0))

is given by

N = ru(u0, v0)× rv (u0, v0) =

∣∣∣∣∣∣
i j k
∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∣∣∣∣∣∣ .
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Example 5 (Finding a Tangent Plane to a Parametric Surface)

Find an equation of the tangent plane to the paraboloid given by

r(u, v) = u i+ v j+ (u2 + v2) k

at the point (1, 2, 5).
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Figure 22: Paraboloids.
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Area of a Parametric Surface

To define the area of a parametric surface, you can use a development
that is similar to that given in Section 14.5. Begin by constructing an
inner partition of D consisting of n rectangles, where the area of the
ith rectangle Di is ∆Ai = ∆ui∆vi , as shown in Figure 23.

Figure 23: The area of the parallelogram in the tangent plane.
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In each Di let (ui , vi ) be the point that is closest to the origin. At the
point (xi , yi , zi ) = (x(ui , vi ), y(ui , vi ), z(ui , vi )) on the surface S ,
construct a tangent plane Ti .

The area of the portion of S that corresponds to Di ,∆Ti , can be
approximated by a parallelogram in the tangent plane. That is,
∆Ti ≈ ∆Si .

So, the surface of S is given by Σ∆Si ≈ Σ∆Ti . The area of the
parallelogram in the tangent plane is

∥∆ui ru ×∆vi rv∥ = ∥ru × rv∥∆ui∆vi

which leads to the following definition.
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Definition 15.10 (Area of a parametric surface)

Let S be a smooth parametric surface

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v) k

defined over an open region D in the uv -plane. If each point on the
surface S corresponds to exactly one point in the domain D, then the
surface area of S is given by

Surface area =

∫∫
S
dS =

∫∫
D
∥ru × rv∥ dA

where

ru =
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k and rv =

∂x

∂v
i+

∂y

∂v
j+

∂z

∂v
k.
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For a surface S given by z = f (x , y), this formula for surface area
corresponds to that given in Section 14.5. To see this, you can
parametrize the surface using the vector-valued function

r(x , y) = x i+ y j+ f (x , y) k

defined over the region R in the xy -plane. Using

rx = i+ fx(x , y) k and ry = j+ fy (x , y) k

you have

rx × ry =

∣∣∣∣∣∣
i j k
1 0 fx(x , y)
0 1 fy (x , y)

∣∣∣∣∣∣ = −fx(x , y) i− fy (x , y) j+ k

and ∥rx × ry∥ =
√
[fx(x , y)]2 + [fy (x , y)]2 + 1.

This implies that the surface area of S is

Surface of area =

∫∫
R
∥rx × ry∥ dA

=

∫∫
R

√
1 + [fx(x , y)]2 + [fy (x , y)]2 dA.
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Example 6 (Finding Surface Area)

Find the surface area of the unit sphere given by

r(u, v) = sin u cos v i+ sin u sin v j+ cos u k

where the domain D is given by 0 ≤ u ≤ π and 0 ≤ v ≤ 2π.
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If the surface S is a surface of revolution, you can show that the
formula for surface area given in Section 7.4 is equivalent to the
formula given in this section. For instance, suppose f is a nonnegative
function such that f ′ is continuous over the interval [a, b].

Let S be the surface of revolution formed by revolving the graph of f ,
where a ≤ x ≤ b, about the x-axis. From Section 7.4, you know that
the surface area is given by

Surface area = 2π

∫ b

a
f (x)

√
1 + [f ′(x)]2 dx .
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To represent S parametrically, let x = u, y = f (u) cos v , and
z = f (u) sin v , where a ≤ u ≤ b and 0 ≤ v ≤ 2π. Then,

r(u, v) = u i+ f (u) cos v j+ f (u) sin v k.

Try showing that the formula

Surface area =

∫∫
D
∥ru × rv∥ dA

is equivalent to the formula given above (see Exercise 58).
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Surface Integrals

The remainder of this chapter deals primarily with surface integrals.
You will first consider surfaces given by z = g(x , y). Later in this
section you will consider more general surfaces given in parametric
form.

Let S be a surface given by z = g(x , y) and let R be its projection
onto the xy -plane, as shown in Figure 24.

Figure 24: Paraboloids.
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Suppose that g , gx and gy are continuous at all points in R and that
f is defined on S .

Employing the procedure used to find surface area in Section 14.5,
evaluate f at (x1, y1, z1) and form the sum

n∑
i=1

f (xi , yi , zi )∆Si

where ∆Si ≈
√

1 + [gx(xi , yi )]2 + [gy (xi , yi )]2∆Ai .

Provided the limit of this sum as ∥∆∥ approaches 0 exists, the
surface integral of f over S is defined as∫∫

S
f (x , y , z) dS = lim

∥∆∥→0

n∑
i=1

f (xi , yi , zi )∆Si .

This integral can be evaluated by a double integral.
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Theorem 15.10 (Evaluating a surface integral)

Let S be a surface with equation z = g(x , y) and let R be its projection
onto the xy-plane. If g , gx , and gy are continuous on R and f is
continuous on S, then the surface integral of f over S is∫∫

S
f (x , y , z) dS =

∫∫
R
f (x , y , g(x , y))

√
1 + [gx(x , y)]2 + [gy (x , y)]2 dA.

For surfaces described by functions of x and z (or y and z), you can
make the following adjustments to Theorem 15.10. If S is the graph
of y = g(x , z) and R is its projection onto the xz-plane, then it is∫∫

R
f (x , g(x , z), z)

√
1 + [gx(x , z)]2 + [gz(x , z)]2 dA.
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If S is the graph of x = g(y , z) and R is its projection onto the
yz-plane, then it is∫∫

R
f (g(y , z), y , z)

√
1 + [gy (y , z)]2 + [gz(y , z)]2 dA.

If f (x , y , z) = 1, the surface integral over S yields the surface area of
S .

For instance, suppose the surface S is the plane given by z = x ,
where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. The surface area of S is

√
2 square

units. Try verifying that
∫∫

S f (x , y , z) dS =
√
2.
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Example 2 (Evaluating a Surface Integral)

Evaluate the surface integral ∫∫
S
(x + z) dS

where S is the first-octant portion of the cylinder y2 + z2 = 9 between
x = 0 and x = 4, as shown below.
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Parametric Surfaces and Surface Integrals

For a surface S given by the vector-valued function

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v) k Parametric surface

defined over a region D in the uv -plane, you can show that the
surface integral of f (x , y , z) over S is given by∫∫

D
f (x(u, v), y(u, v), z(u, v))∥ru(u, v)× rv (u, v)∥ dA.

Note the similarity to a line integral over a space curve C .∫
C
f (x , y , z) ds =

∫ b

a
f (x(t), y(t), z(t))∥r′(t)∥dt.

Also, notice that ds and dS can be written as

ds = ∥r′(t)∥dt and dS = ∥ru(u, v)× rv (u, v)∥ dA.
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Example 4 (Evaluating a Surface Integral)

Example 2 demonstrated an evaluation of the surface integral∫∫
S
(x + z) dS

where S is the first-octant portion of the cylinder y2 + z2 = 9 between
x = 0 and x = 4 (see Figure below). Reevaluate this integral in parametric
form.
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Orientation of a Surface

Unit normal vectors are used to induce an orientation to a surface S
in space. A surface is called orientable if a unit normal vector N can
be defined at every nonboundary point of S in such a way that the
normal vectors vary continuously over the surface S . If this is
possible, S is called an oriented surface.

An orientable surface S has two distinct sides. So, when you orient a
surface, you are selecting one of the two possible unit normal vectors.

If S is a closed surface such as a sphere, it is customary to choose the
unit normal vector N to be the one that points outward from the
sphere.

Most common surfaces, such as spheres, paraboloids, ellipses, and
planes, are orientable. (See Exercise 43 for an example of a surface
that is not orientable.)
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Moreover, for an orientable surface, the gradient vector provides a
convenient way to find a unit normal vector. That is, for an orientable
surface S given by

z = g(x , y) Orientable surface

let
G (x , y , z) = z − g(x , y).

Then, S can be oriented by either the unit normal vector

N =
∇G (x , y , z)

∥∇G (x , y , z)∥

=
−gx(x , y) i− gy (x , y) j+ k√
1 + [gx(x , y)]2 + [gy (x , y)]2

Upward unit normal vector
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or the unit normal vector

N =
−∇G (x , y , z)

∥∇G (x , y , z)∥

=
gx(x , y) i+ gy (x , y) j− k√
1 + [gx(x , y)]2 + [gy (x , y)]2

Downward unit normal vector

as shown in Figure 26.

(a) S is oriented in an
upward direction.

(b) S is oriented in a
downward direction.

Figure 26: Smooth orientable surface.
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If the smooth orientable surface S is given in parametric form by

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v) k Parametric surface

the unit normal vectors are given by

N =
ru × rv
∥ru × rv∥

Upward unit normal vector

and

N =
rv × ru
∥rv × ru∥

. Downward unit normal vector

For an orientable surface given by

y = g(x , z) or x = g(y , z)

you can use the gradient

∇G (x , y , z) = −gx(x , z) i+ j−gz(x , z) k G (x , y , z) = y − g(x , z)

or

∇G (x , y , z) = i− gy (y , z) j− gz(x , z) k G (x , y , z) = x − g(y , z)

to orient the surface.
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Flux Integrals

One of the principal applications involving the vector form of a
surface integral relates to the flow of a fluid through a surface S .
Suppose an oriented surface S is submerged in a fluid having a
continuous velocity field F.

Let ∆S be the area of a small patch of the surface S over which F is
nearly constant. Then the amount of fluid crossing this region per
unit of time is approximated by the volume of the column of height
F ·N, as shown in Figure 140. That is,

∆V = (height)(area of base) = (F ·N)∆S .
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Figure 27: The velocity field F indicates the direction of the fluid flow.

Consequently, the volume of fluid crossing the surface S per unit of
time (called the flux of F across S) is given by the surface integral in
the following definition.
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Definition 15.11 (Definition of flux integral)

Let F(x , y , z) = M i+N j+P k, where M, N, and P have continuous first
partial derivatives on the surface S oriented by a unit normal vector N.
The flux integral of F across S is given by∫∫

S
F ·N dS .
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Geometrically, a flux integral is the surface integral over S of the
normal component of F. If ρ(x , y , z) is the density of the fluid at
(x , y , z), the flux integral ∫∫

S
ρF ·N dS

represents the mass of the fluid flowing across S per unit of time.

To evaluate a flux integral for a surface given by z = g(x , y), let

G (x , y , z) = z − g(x , y).

Then, NdS can be written as follows.

N dS =
∇G (x , y , z)

∥∇G (x , y , z)∥
dS

=
∇G (x , y , z)√

(gx)2 + (gy )2 + 1

√
(gx)2 + (gy )2 + 1 dA

= ∇G (x , y , z) dA
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Theorem 15.11 (Evaluating a flux integral)

Let S be an oriented surface given by z = g(x , y) and let R be its
projection onto the xy-plane.∫∫

S
F ·N dS =

∫∫
R
F · [−gx(x , y) i− gy (x , y) j+ k] dA Upward∫∫

S
F ·N dS =

∫∫
R
F · [gx(x , y) i+ gy (x , y) j− k] dA Downward

For the first integral, the surface is oriented upward, and for the second
integral, the surface is oriented downward.
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Example 6 (Finding the Flux of an Inverse Square Field)

Find the flux over the sphere S given by

x2 + y2 + z2 = a2 Sphere S

where F is an inverse square field given by

F(x , y , z) =
kq

∥r∥2
r

∥r∥
=

kqr

∥r∥3
Inverse square field F

and r = x i+ y j+ z k. Assume S is oriented outward, as shown in Figure
below

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 144 / 180



Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 145 / 180



Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 146 / 180



The result in Example 6 shows that the flux across a sphere S in an
inverse square field is independent of the radius of S . In particular, if
E is an electric field, the result in Example 6, along with Coulomb’s
Law, yields one of the basic laws of electrostatics, known as Gauss’s
Law: ∫∫

S
E ·N dS = 4πkq Gauss’s Law

where q is a point charge located at the center of the sphere and k is
the Coulomb constant.

Gauss’s Law is valid for more general closed surfaces that enclose the
origin, and relates the flux out of the surface to the total charge q
inside the surface.

Surface integrals are also used in the study of heat flow.
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Heat flows from areas of higher temperature to areas of lower
temperature in the direction of greatest change. As the result,
measuring heat flux involves the gradient of the temperature.

So, assume that the heat flux across a portion of the surface of area
∆S is given by ∆H ≈ −k∇T ·NdS , where T is the temperature, N
is the unit normal vector to the surface in the direction of the heat
flow, and k is the thermal diffusivity of the material.

The heat flux across the surface is given by

H =

∫∫
S
−k∇T ·NdS . Heat flux across S
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Divergence Theorem

Recall from Section 4 that an alternative form of Green’s Theorem is∫
C
F ·N ds =

∫∫
R

(
∂M

∂x
+

∂N

∂y

)
dA

=

∫∫
R
divF dA.

In an analogous way, the Divergence Theorem gives the relationship
between a triple integral over a solid region Q and a surface integral
over the surface of Q.

In the statement of the theorem, the surface S is closed in the sense
that it forms the complete boundary of the solid Q.
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Regions bounded by spheres, ellipsoids, cubes, tetrahedrons, or
combinations of these surfaces are typical examples of closed surfaces.

Assume that Q is a solid region on which a triple integral can be
evaluated, and that the closed surface S is oriented by outward unit
normal vectors, as shown in Figure 28.

Figure 28: Outward.
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Theorem 15.12 (The divergence theorem)

Let Q be a solid region bounded by a closed surface S oriented by a unit
normal vector directed outward from Q. If F is a vector field whose
component functions have continuous first partial derivatives in Q, then∫∫

S
F ·N dS =

∫∫∫
Q
divF dV .
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Even though the Divergence Theorem was stated for a simple solid
region Q bounded by a closed surface, the theorem is also valid for
regions that are the finite unions of simple solid regions.

For example, let Q be the solid bounded by the closed surfaces S1
and S2, as shown in Figure 29. To apply the Divergence Theorem to
this solid, let S = S1 ∪ S2.

Figure 29: Simple solid regions.
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The normal vector N to S is given by −N1 on S1 and by N2 on S2.
So, you can write∫∫∫

Q
divF dV =

∫∫
S
F ·N dS

=

∫∫
S1

F · (−N1) dS +

∫∫
S2

F ·N2 dS

= −
∫∫

S1

F ·N1 dS +

∫∫
S2

F ·N2 dS

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 154 / 180



Example 1 (Using the Divergence Theorem)

Let Q be the solid region bounded by the coordinate planes and the plane
2x + 2y + z = 6, and let F = x i+ y2 j+ z k. Find∫∫

S
F ·N dS

where S is the surface of Q.
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Figure 30: Solid region bounded by the coordinate planes.
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Example 2 (Verifying the Divergence Theorem)

Let Q be the solid region between the paraboloid

z = 4− x2 − y2

and the xy -plane. Verify the Divergence Theorem for

F(x , y , z) = 2z i+ x j+ y2 k.
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Figure 31: paraboloid.
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Flux and the Divergence Theorem

To help understand the Divergence Theorem, consider the two sides
of the equation ∫∫

S
F ·NdS =

∫∫∫
Q
divF dV .

You know from Section 6 that the flux integral on the left determines
the total fluid flow across the surface S per unit of time. This can be
approximated by summing the fluid flow across small patches of the
surface.

The triple integral on the right measures this same fluid flow across
S , but from a very different perspective - namely, by calculating the
flow of fluid into (or out of) small cubes of volume ∆Vi .
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The flux of the ith cube is approximately

Flux of ith cube ≈ divF(xi , yi , zi )∆Vi

for some point (xi , yi , zi ) in the ith cube.

Note that for a cube in the interior of Q, the gain (or loss) of fluid
through any one of its six sides is offset by a corresponding loss (or
gain) through one of the sides of an adjacent cube.

After summing over all the cubes in Q, the only fluid flow that is not
canceled by adjoining cubes is that on the outside edges of the cubes
on the boundary. So, the sum

n∑
i=1

divF(xi , yi , zi )∆Vi

approximates the total flux into (or out of) Q, and therefore through
the surface S .
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To see what is meant by the divergence of F at a point, consider
∆Vα to be the volume of a small sphere Sα of radius α and center
(x0, y0, z0), contained in region Q, as shown in Figure 32.

Figure 32: Solid region Q.
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Applying the Divergence Theorem to Sα produces

Flux of F across Sα =

∫∫∫
Qα

divF dV

≈ divF(x0, y0, z0)∆Vα

where Qα is the interior of Sα.

Consequently, you have

divF(x0, y0, z0) ≈
flux of F across Sα

∆Vα

and, by taking the limit as α → 0, you obtain the divergence of F at
the point (x0, y0, z0).

divF(x0, y0, z0) = lim
α→0

flux of F across Sα
∆Vα

= flux per unit volume at (x0, y0, z0)
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The point (x0, y0, z0) in a vector field is classified as a source, a sink,
or incompressible, as follows.

1. source, for divF > 0 See Figure 33(a)

2. sink, for divF < 0 See Figure 33(b)

3. incompressible, for divF = 0 See Figure 33(c)

Figure 33: A vector field is classified as a source, a sink, or incompressible.
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Example 4 (Calculating Flux by the Divergence Theorem)

Let Q be the region bounded by the sphere x2 + y2 + z2 = 4. Find the
outward flux of the vector field

F(x , y , z) = 2x3 i+ 2y3 j+ 2z3 k

through the sphere.
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Stokes’s Theorem

A second higher-dimension analog of Green’s Theorem is called
Stokes’s Theorem which gives the relationship between a surface
integral over an oriented surface S and a line integral along a closed
space curve C forming the boundary of S , as shown in Figure below.

The positive direction along C is counterclockwise relative to the
normal vector N.
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That is, if you imagine grasping the normal vector N with your right
hand, with your thumb pointing in the direction of N, your fingers
will point in the positive direction C , as shown in Figure below.

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 169 / 180



Theorem 15.13 (Stokes’s Theorem)

Let S be an oriented surface with unit normal vector N, bounded by a
piecewise smooth simple closed curve C with a positive orientation. If F is
a vector field whose component functions have continuous first partial
derivatives on an open region containing S and C, then∫

C
F · dr =

∫∫
S
(curlF) ·N dS .

Szu-Chi Chung (NSYSU) Chapter 15 Vector Analysis June 9, 2024 170 / 180



Example 1 (Using Stokes’s Theorem)

Let C be the oriented triangle lying in the plane 2x + 2y + z = 6, as
shown in Figure below. Evaluate∫

C
F · dr

where F(x , y , z) = −y2 i+ z j+ x k.
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Example 2 (Verifying Stokes’s Theorem)

Let S be the portion of the paraboloid z = 4− x2 − y2 lying above the
xy -plane, oriented upward (see Figure below). Let C be its boundary curve
in the xy -plane, oriented counterclockwise. Verify Stokes’s Theorem for

F(x , y , z) = 2z i+ x j+ y2 k

by evaluating the surface integral and the equivalent line integral.
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Physical Interpretation of Curl

Stokes’s Theorem provides insight into a physical interpretation of
curl. In a vector field F, let S , be a small circular disk of radius α,
centered at (x , y , z) and with boundary Cα, as shown in Figure below.

At each point on the circle Cα, F has a normal component F ·N and
a tangential component F · T.
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The more closely F and T are aligned, the greater the value of F · T.
So, a fluid tends to move along the circle rather than across it.

Consequently, you say that the line integral around Cα, measures the
circulation of F around Cα. That is,∫

Cα

F · T ds = circulation of F around Cα.

Now consider a small disk Sα, to be centered at some point (x , y , z)
on the surface S , as shown in Figure below.
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On such a small disk, curl F is nearly constant, because it varies little
from its value at (x , y , z). Moreover, curl F ·N is also nearly constant
on Sα, because all unit normals to S , are about the same.

Consequently, Stokes’s Theorem yields∫
Cα

F · T ds =

∫∫
Sα

(curlF) ·NdS

≈ (curlF) ·N
∫∫

Sα

dS

≈ (curlF) ·N(πα2).

So,

(curlF) ·N ≈
∫
Cα

F · T ds

πα2

=
circulation of F around Cα

area of disk Sα
= rate of circulation.
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Assuming conditions are such that the approximation improves for
smaller and smaller disks (α → 0), it follows that

(curlF) ·N = lim
α→0

1

πα2

∫
Cα

F · T ds

which is referred to as the rotation of F about N. That is,

curlF(x , y , z) ·N = rotation of F about N at(x , y , z).

In this case, the rotation of F is maximum when curl F and N have
the same direction.
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Normally, this tendency to rotate will vary from point to point on the
surface S , and Stokes’s Theorem∫∫

S
(curlF) ·N dS︸ ︷︷ ︸

Surface integral

=

∫
C
F · dr︸ ︷︷ ︸

Line integral

says that the collective measure of this rotational tendency taken over
the entire surface S (surface integral) is equal to the tendency of a
fluid to circulate around the boundary C (line integral).
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